Neural Prediction of Chaotic Time Series Using Stochastic Gradient Ascent Algorithm

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neural Networks for Chaotic Time Series Prediction

There are many systems that can be described as chaotic: The readings from seismic monitoring stations in mines which describe the rock dynamics, from EKG which describe the fibrillation of a cardiac patient’s heart, and the share prices in financial markets which describe the optimism about the earning potential of companies are examples of observations of deterministic, non−linear, dynamical ...

متن کامل

Chaotic time series prediction using the Kohonen algorithm

Deterministic nonlinear prediction is a pow erful tec hnique for the analysis and prediction of time series generated by nonlinear dynamical systems. In this paper the use of a Kohonen netw ork asa component of one deterministic nonlinear prediction algorithm is suggested. In order to evaluate the performance of the proposed algorithm, it was applied to the prediction of time series generated b...

متن کامل

Vehicle's velocity time series prediction using neural network

This paper presents the prediction of vehicle's velocity time series using neural networks. For this purpose, driving data is firstly collected in real world traffic conditions in the city of Tehran using advance vehicle location devices installed on private cars. A multi-layer perceptron network is then designed for driving time series forecasting. In addition, the results of this study are co...

متن کامل

Chaotic Time Series Prediction Using Data Fusion

One of the main problems in chaotic time series prediction is that the underlying nonlinear dynamics is usually unknown. Using a nonlinear predictor to predict a chaotic time series usually puts a limit on the accuracy since the nonlinear predictor is basically an approximation of the unknown nonlinear mapping. In this paper, we propose using fusion of predictors as a method to improve the perf...

متن کامل

Chaotic Time Series Prediction Using Wavelet Decomposition

A novel approach to chaotic time series prediction is proposed. It is based on the use of the Discrete Wavelet Transform for obtaining a proper decomposition of the original sequence and standard multilayer neural networks for performing the prediction of the individual components. Simulation results for the case of chaotic signals obtained by integrating the Lorenz equations are presented, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the ISCIE International Symposium on Stochastic Systems Theory and its Applications

سال: 2004

ISSN: 2188-4730,2188-4749

DOI: 10.5687/sss.2004.17